Tumor-associated MICA is shed by ADAM proteases.

نویسندگان

  • Inja Waldhauer
  • Dennis Goehlsdorf
  • Friederike Gieseke
  • Toni Weinschenk
  • Mareike Wittenbrink
  • Andreas Ludwig
  • Stefan Stevanovic
  • Hans-Georg Rammensee
  • Alexander Steinle
چکیده

The immunoreceptor NKG2D promotes immunosurveillance of malignant cells and protects the host from tumor initiation by activating natural killer cells and costimulating CD8 T cells. NKG2D-mediated recognition of malignant cells by cytotoxic lymphocytes is enabled through the tumor-associated expression of NKG2D ligands (NKG2DL) resulting from cellular or genotoxic stress. Shedding of NKG2DL is thought to constitute a major countermechanism of tumor cells to subvert NKG2D-mediated immunosurveillance. Here, we report that the prototypical NKG2DL MICA is released by proteolytic cleavage in the stalk of the MICA ectodomain, where deletions, but not alanine substitutions, impede MICA shedding. Small compound-mediated stimulation and inhibition of MICA shedding adduced characteristics that indicated an involvement of members of the "a disintegrin and metalloproteinase" (ADAM) family. Accordingly, MICA shedding by tumor cells was inhibited by silencing of the related ADAM10 and ADAM17 proteases, which are known to promote tumor growth by releasing epidermal growth factor receptor ligands. Collectively, our data show that ADAM10 and ADAM17 are critically involved in the tumor-associated proteolytic release of soluble MICA facilitating tumor immune escape. Hence, therapeutic blockade of ADAM10 and ADAM17 seems promising for cancer treatment by targeting both growth and immune escape of tumors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes.

The MHC class I-related chain (MIC) A and MICB ligands for the activating receptor NKG2D can be shed from tumor cells, and the presence of these soluble molecules in sera is related with compromised immune response and progression of disease. Recently, thiol disulphide isomerases and members of the ADAM (a disintegrin and metalloproteinase) gene family were identified as key enzymes in mediatin...

متن کامل

Matrix metallopeptidase 2 (MMP2) mediates MHC class I polypeptide-related sequence A (MICA) shedding in renal cell carcinoma.

INTRODUCTION The MHC class i chain-related molecule A (MICA) is a ligand for the natural killer group 2, member D (NKG2D) immunoreceptor activation. The engagement of tumor cell surface MICA to NKG2D stimulates the NK and T cell antitumor immunity. Shedding of MICA by tumor cells facilitates tumor immune evasion, which might partially contribute to tumor progression. MATERIAL AND METHODS Inmu...

متن کامل

Constitutive and induced CD44 shedding by ADAM-like proteases and membrane-type 1 matrix metalloproteinase.

CD44 is a receptor for hyaluronan and mediates signaling that regulates complex cell behavior including cancer cell migration and invasion. Shedding of the extracellular portion of CD44 is the last step in the regulation of the molecule-releasing interaction between the ligand and cell. However, highly glycosylated forms of CD44 have hampered the identification of the exact cleavage sites for s...

متن کامل

Effect of Thermal Stress on MICA/B Induction in a Human Liposarcoma Cell Line

Background: A possible mechanism by which hyperthermia enhances tumor immunogenicity is the induction of NKG2D ligands on tumor cells. Although the expression of MHC class I chain-related protein A and B (MICA/B) has previously been reported in different carcinomas, there is no information about MICA/B expression in liposarcomas. Objective: To investigate MICA/B induction in a human liposarcoma...

متن کامل

Clinical significance of soluble major histocompatibility complex class I chain-related a in renal cell carcinoma patients.

OBJECTIVE Major histocompatibility complex class I chain-related A (MICA) is a stress-inducible glycoprotein that can be shed as a soluble protein. This study was conducted to determine the expression of MICA in renal cell carcinoma (RCC) and examine the clinical relevance of soluble MICA (sMICA) in this disease. METHODS Immunohistochemistry and real-time PCR analyses were performed to assess...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 68 15  شماره 

صفحات  -

تاریخ انتشار 2008